Characterizing Landscape Spatial Heterogeneity Using Semivariogram Parameters Derived from NDVI Images
[EN] Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape s...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [EN] Assuming a relationship between landscape heterogeneity and measures of spatial
dependence by using remotely sensed data, the aim of this work was to evaluate the potential
of semivariogram parameters, derived from satellite images with different spatial resolutions,
to characterize landscape spatial heterogeneity of forested and human modified areas. The
NDVI (Normalized Difference Vegetation Index) was generated in an area of Brazilian amazon
tropical forest (1,000 km²). We selected samples (1 x 1 km) from forested and human modified
areas distributed throughout the study area, to generate the semivariogram and extract the sill
(¿²-overall spatial variability of the surface property) and range (¿-the length scale of the spatial
structures of objects) parameters. The analysis revealed that image spatial resolution influenced
the sill and range parameters. The average sill and range values increase from forested to human
modified areas and the greatest between-class variation was found for LANDSAT 8 imagery,
indicating that this image spatial resolution is the most appropriate for deriving sill and range
parameters with the intention of describing landscape spatial heterogeneity. By combining
remote sensing and geostatistical techniques, we have shown that the sill and range parameters
of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity
and can be used to provide landscape heterogeneity maps to enable researchers to design
appropriate sampling regimes. In the future, more applications combining remote sensing and
geostatistical features should be further investigated and developed, such as change detection
and image classification using object-based image analysis (OBIA) approaches.
[PT] Assumindo a existência de uma relação entre a heterogeneidade da paisagem e medidas de dependência espacial obtidas de dados de sensoriamento remoto, o objetivo deste estudo foi avaliar o potencial dos parâmetros do semivariograma derivados de imagens de satélite com diferentes resoluções espaciais, para caracterizar áreas cobertas por floresta e áreas sob ação antrópica. Para isso, o NDVI (Índice de Vegetação da Diferença Normalizada) de cada umas das imagens (SPOT 6, Landsat 8 e MODIS Terra) foi gerado em uma área de floresta tropical Amazônica (1.000 km²), onde foram selecionadas amostras (1 x 1 km) de áreas florestadas e áreas antrópicas. A partir destes dados, foram gerados os semivariogramas e extraídos os parâmetros pata |
---|