OPTIMIZACIÓN MULTIOBJETIVO PARA LA SELECCIÓN DE CARTERAS A LA LUZ DE LA TEORÍA DE LA CREDIBILIDAD: UNA APLICACIÓN EN EL MERCADO INTEGRADO LATINOAMERICANO

El presente trabajo de investigación doctoral tiene como fin optimizar carteras multiobjetivo a la luz de la teoría de la credibilidad. Con el fin de cumplir con este propósito, se propone un novedoso modelo difuso de optimización denominado "Modelo Credibilístico Multiobjetivo de Media-Semivar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: González Bueno, Jairo Alexander
Format: Dissertation
Sprache:spa
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:El presente trabajo de investigación doctoral tiene como fin optimizar carteras multiobjetivo a la luz de la teoría de la credibilidad. Con el fin de cumplir con este propósito, se propone un novedoso modelo difuso de optimización denominado "Modelo Credibilístico Multiobjetivo de Media-Semivarianza-Liquidez para la Selección de Carteras". La incertidumbre de la liquidez y el rendimiento futuro de cada activo se modela por medio de números difusos L-R con funciones de referencia tipo potencia. Con el objetivo de conseguir un modelo más realista se considera la restricción de cardinalidad que limita el número de activos que participan en las carteras y las restricciones de cotas superiores e inferiores que permiten combinaciones de activos que respetan las preferencias del inversor. Con el propósito de seleccionar la cartera óptima, esta investigación define por primera vez el ratio de Sortino en un entorno credibilístico. El problema de optimización multiobjetivo resultante es lineal y convexo, y la introducción de restricciones realistas convierte el modelo de un problema de optimización cuadrática clásica (classical quadratic optimization problem) a un problema de programación cuadrática de enteros mixtos (quadratic mixed-integer problem) que es NP-hard. Para superar este inconveniente se aplica el Non-dominated Sorting Genetic Algorithm (NSGAII), MOEA que ha sido utilizado con éxito en la generación de soluciones eficientes en varios modelos multiobjetivos de selección de carteras. Finalmente, se demuestra la efectividad y eficiencia del modelo en aplicaciones prácticas, asumiendo por primera vez la toma de decisiones de inversión en el Mercado Integrado Latinoamericano (MILA), que integra los mercados bursátiles de Chile, Colombia, México y Perú. The present doctoral dissertation aims to optimize multiobjective portfolio in the light of credibility theory. In order to meet this purpose, a novel fuzzy optimization model called "Multiobjective Credibilistic Mean-Semivariance-Liquidity Portfolio Selection Model" is proposed. The uncertainty of the future return and liquidity of each asset are modeled by means of LR-fuzzy numbers belonging to the power family. In order to make a more realistic model, it is considered the cardinality constraint limiting the number of assets participating in the portfolios, and upper and lower bound constraints allowing assets combinations which respect the investor's wishes. In the interest of selecting the optimal portfoli