A dynamic mathematical model of a shell-and-tube evaporator. Validation with pure and blend refrigerants

[EN] This work presents a mathematical model of a shell-and-tube evaporator based on mass continuity, energy conservation and heat transfer physical fundamentals. The model is formulated as a control volume combination that represents the different refrigerant states along the evaporator. Since the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Llopis, R, Cabello, R, Navarro-Esbrí, J, Torrella Alcaraz, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[EN] This work presents a mathematical model of a shell-and-tube evaporator based on mass continuity, energy conservation and heat transfer physical fundamentals. The model is formulated as a control volume combination that represents the different refrigerant states along the evaporator. Since the model is based on refrigerant and secondary fluid states prediction, it can be easily adapted for modelling any type of evaporator. The strategy of working with physical fundamentals allows the steady- and dynamic-state analysis of any of its performance variables. The paper presents a steady-state validation made with two pure refrigerants (HCFC-22, HFC-134a) and with a zeotropic blend (HFC-407C), and a dynamic validation with transient experimental tests using HCFC-22. The model prediction error is lower than 5% and it is well in accordance with actual dynamic behaviour. Llopis, R.; Cabello, R.; Navarro-Esbrí, J.; Torrella Alcaraz, E. (2007). A dynamic mathematical model of a shell-and-tube evaporator. Validation with pure and blend refrigerants. International Journal of Energy Research. 31(3):232-244. doi:10.1002/er.1243