Importance of immunometabolic markers for the classification of patients with major depressive disorder using machine learning

Background: Although there is scientific evidence of the presence of immunometabolic alterations in major depression, not all patients present them. Recent studies point to the association between an inflammatory phenotype and certain clinical symptoms in patients with depression. The objective of o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sánchez Carro, Yolanda, Torre Luque, Alejandro de la, Leal Leturia, Itziar, Salvat Pujol, Neus, Massaneda, Clara, Arriba Arnau, Aida de, Urretavizcaya Sarachaga, Mikel, Pérez Solà, Victor, Toll Privat, Alba, Martínez Ruiz, Antonio, Ferreirós Martínez, Raquel, Pérez, Salvador, Sastre, Juan, Álvarez, Pilar, Soria, Virginia, López García, Pilar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Although there is scientific evidence of the presence of immunometabolic alterations in major depression, not all patients present them. Recent studies point to the association between an inflammatory phenotype and certain clinical symptoms in patients with depression. The objective of our study was to classify major depression disorder patients using supervised learning algo-rithms or machine learning, based on immunometabolic and oxidative stress biomarkers and lifestyle habits.Methods: Taking into account a series of inflammatory and oxidative stress biomarkers (C-reactive protein (CRP), tumor necrosis factor (TNF), 4-hydroxynonenal (HNE) and glutathione), metabolic risk markers (blood pressure, waist circumference and glucose, triglyceride and cholesterol levels) and lifestyle habits of the participants (physical activity, smoking and alcohol consumption), a study was carried out using machine learning in a sample of 171 participants, 91 patients with depression (71.42% women, mean age = 50.64) and 80 healthy subjects (67.50% women, mean age = 49.12).The algorithm used was the support vector machine, performing cross validation, by which the subdivision of the sample in training (70%) and test (30%) was carried out in order to estimate the precision of the model. The prediction of belonging to the patient group (MDD patients versus control subjects), melancholic type (melancholic versus non-melancholic patients) or resistant depression group (treatment-resistant versus non -treatment-resistant) was based on the importance of each of the immunometabolic and lifestyle variables.Results: With the application of the algorithm, controls versus patients, such as patients with melancholic symptoms versus non-melancholic symptoms, and resistant versus non-resistant symptoms in the test phase were optimally classified.The variables that showed greater importance, according to the results of the area under the ROC curve, for the discrimination between healthy subjects and patients with depression were current alcohol consumption (AUC = 0.62), TNF-alpha levels (AUC = 0.61), glutathione redox status (AUC = 0.60) and the performance of both moderate (AUC = 0.59) and vigorous physical exercise (AUC = 0.58). On the other hand, the most important variables for classifying melancholic patients in relation to lifestyle habits were past (AUC = 0.65) and current (AUC = 0.60) tobacco habit, as well as walking routinely (AUC = 0.59) and in relation to immunometa
ISSN:1878-4216
DOI:10.1016/j.pnpbp.2022.110674