Mixed dynamics of two-dimensional reversible maps with a symmetric couple of quadratic homoclinic tangencies

We study dynamics and bifurcations of 2-dimensional reversible maps having a symmetric saddle fixed point with an asymmetric pair of nontransversal homoclinic orbits (a symmetric nontransversal homoclinic figure-8). We consider one-parameter families of reversible maps unfolding the initial homoclin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Delshams Valdés, Amadeu, Gonchenko, Marina, Gonchenko, Sergey, Lázaro Ochoa, José Tomás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study dynamics and bifurcations of 2-dimensional reversible maps having a symmetric saddle fixed point with an asymmetric pair of nontransversal homoclinic orbits (a symmetric nontransversal homoclinic figure-8). We consider one-parameter families of reversible maps unfolding the initial homoclinic tangency and prove the existence of infinitely many sequences (cascades) of bifurcations related to the birth of asymptotically stable, unstable and elliptic periodic orbits.
ISSN:1078-0947
DOI:10.3934/dcds.2018196