Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells

The mitogenic neuropeptides bombesin and vasopressin markedly increased tyrosine and serine phosphorylation of multiple substrates in quiescent Swiss 3T3 fibroblasts, including two major bands of Mr 90,000 and 115,000. Tyrosine phosphorylation of these proteins was increased as judged by immunopreci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zachary, Ian, Gil i Santano, Joan, Lehmann, Wolfram, Sinnett-Smith, James, Rozengurt, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mitogenic neuropeptides bombesin and vasopressin markedly increased tyrosine and serine phosphorylation of multiple substrates in quiescent Swiss 3T3 fibroblasts, including two major bands of Mr 90,000 and 115,000. Tyrosine phosphorylation of these proteins was increased as judged by immunoprecipitation of 32Pi-labeled cells and immunoblotting of unlabeled cells with monoclonal antiphosphotyrosine antibodies, elution with phenyl phosphate, and phospho amino acid analysis. Phosphotyrosyl proteins generated by bombesin and vasopressin did not correspond either by apparent molecular weight or by immunological and biochemical criteria to several known tyrosine kinase substrates, including phospholipase C gamma, the microtubule-associated protein 2 kinase, GTPase-activating protein, or phosphatidylinositol kinase. The effect was rapid (within seconds), concentration dependent, and inhibited by specific receptor antagonists for both bombesin and vasopressin. The endothelin-related peptide, vasoactive intestinal contractor, also elicited a rapid and concentration-dependent tyrosine/serine phosphorylation of a similar set of substrates. These results demonstrate that neuropeptides, acting through receptors linked to GTP-binding proteins, stimulate tyrosine phosphorylation of a common set of substrates in quiescent Swiss 3T3 cells and suggest the existence of an additional signal transduction pathway in neuropeptide-induced mitogenesis.
ISSN:0027-8424
DOI:10.1073/pnas.88.11.4577