Efficient long-range conduction in cable bacteria through nickel protein wires

Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Boschker, Henricus T. S, Cook, Perran L. M, Polerecky, Lubos, Eachambadi, Raghavendran Thiruvallur, Lozano, Helena, Hidalgo Martinez, Silvia, Khalenkow, Dmitry, Spampinato, Valentina, Claes, Nathalie, Kundu, Paromita, Wang, Da, Bals, Sara, Sand, Karina K, Cavezza, Francesca, Hauffman, Tom, Bjerg, Jesper Tataru, Skirtach, Andre G, Kochan, Kamila, McKee, Merrilyn, Wood, Bayden, Bedolla, Diana, Gianoncelli, Alessandra, Geerlings, Nicole M. J, Van Gerven, Nani, Remaut, Han, Geelhoed, Jeanine S, Millán Solsona, Rubén, Fumagalli, Laura, Nielsen, Lars Peter, Franquet, Alexis, Manca, Jean V, Gomila Lluch, Gabriel, Meysman, Filip J. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24312-4