Remote sensing techniques and stable isotopes as phenotyping tools to assess wheat yield performance: effects of growing temperature and vernalization

This study compares distinct phenotypic approaches to assess wheat performance under different growing temperatures and vernalization needs. A set of 38 (winter and facultative) wheat cultivars were planted in Valladolid (Spain) under irrigation and two contrasting planting dates: normal (late autum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rezzouk, Fatima Zahra, Gracia-Romero, Adrian, Kefauver, Shawn Carlisle, Aparicio, Nieves, Aranjuelo Michelena, Iker, Serret Molins, M. Dolors, Araus Ortega, José Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study compares distinct phenotypic approaches to assess wheat performance under different growing temperatures and vernalization needs. A set of 38 (winter and facultative) wheat cultivars were planted in Valladolid (Spain) under irrigation and two contrasting planting dates: normal (late autumn), and late (late winter). The late plating trial exhibited a 1.5 °C increase in average crop temperature. Measurements with different remote sensing techniques were performed at heading and grain filling, as well as carbon isotope composition (δ13C) and nitrogen content analysis. Multispectral and RGB vegetation indices and canopy temperature related better to grain yield (GY) across the whole set of genotypes in the normal compared with the late planting, with indices (such as the RGB indices Hue, a* and the spectral indices NDVI, EVI and CCI) measured at grain filling performing the best. Aerially assessed remote sensing indices only performed better than ground-acquired ones at heading. Nitrogen content and δ13C correlated with GY at both planting dates. Correlations within winter and facultative genotypes were much weaker, particularly in the facultative subset. For both planting dates, the best GY prediction models were achieved when combining remote sensing indices with δ13C and nitrogen of mature grains. Implications for phenotyping in the context of increasing temperatures are further discussed.
ISSN:0168-9452
DOI:10.1016/j.plantsci.2019.110281