DYRK1A Kinase Positively Regulates Angiogenic Responses in Endothelial Cells
Angiogenesis is a highly regulated process essential for organ development and maintenance, and its deregulation contributes to inflammation, cardiac disorders, and cancer. The Ca2+/nuclear factor of activated T cells (NFAT) signaling pathway is central to endothelial cell angiogenic responses, and...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Angiogenesis is a highly regulated process essential for organ development and maintenance, and its deregulation contributes to inflammation, cardiac disorders, and cancer. The Ca2+/nuclear factor of activated T cells (NFAT) signaling pathway is central to endothelial cell angiogenic responses, and it is activated by stimuli like vascular endothelial growth factor (VEGF) A. NFAT phosphorylation by dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) is thought to be an inactivating event. Contrary to expectations, we show that the DYRK family member DYRK1A positively regulates VEGF-dependent NFAT transcriptional responses in primary endothelial cells. DYRK1A silencing reduces intracellular Ca2+ influx in response to VEGF, which dampens NFAT activation. The effect is exerted at the level of VEGFR2 accumulation leading to impairment in PLC gamma 1 activation. Notably, Dyrk1 alpha heterozygous mice show defects in developmental retinal vascularization. Our data establish a regulatory circuit, DYRK1A/C-a2+/NFAT, to fine-tune endothelial cell proliferation and angiogenesis. |
---|---|
DOI: | 10.1016/j.celrep.2018.04.008 |