The Existence of Triple Positive Solutions of Nonlinear Four-point Boundary Value Problem with p-Laplacian
This paper deals with the multiplicity results of positive solutions of one-dimensional singular p-Laplace equation ($\varphi_p(u'(t)))' + a{t)f(t,u(t),u'(t)) = 0$, 0 < t < 1 subject to the nonlinear boundary conditions $\alpha\varphi_p(u(0)) - \Beta\varphi_p(u'(\xi...
Gespeichert in:
Veröffentlicht in: | Turkish journal of mathematics 2009-01, Vol.33 (2), p.131-142 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the multiplicity results of positive solutions of one-dimensional singular p-Laplace equation
($\varphi_p(u'(t)))' + a{t)f(t,u(t),u'(t)) = 0$, 0 < t < 1
subject to the nonlinear boundary conditions
$\alpha\varphi_p(u(0)) - \Beta\varphi_p(u'(\xi)) = 0$, $\gamma\varphi_p(u(1)) + \delta\varphi_p(u'(\eta)) = 0$
where $\varphi_p(x) = |x|^{p-2}x,p > 1$. By using the Avery-Peterson fixed point theorem, sufficient conditions for the existence of at least three positive solutions to the boundary value problem mentioned above are obtained. |
---|---|
ISSN: | 1303-6149 1300-0098 1303-6149 |
DOI: | 10.3906/mat-0802-10 |