On the subrings of the ring of analytic functions and conformally equivalance
We consider the discrete sets $D_i\subset G_1$. of the regions $G_1$ in the complex plane e and study the subrings of the rings of analytic functions $A(G_1)$ corresponding to these discrete sets $D_i (i=12)$. Furthermore, we prove that the sets of zeros of the functions which map onto each other un...
Gespeichert in:
Veröffentlicht in: | Communications Series A1 Mathematics & Statistics 1996, Vol.45 (1-2), p.55-60 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the discrete sets $D_i\subset G_1$. of the regions $G_1$ in the complex plane e and study the subrings of the rings of analytic functions $A(G_1)$ corresponding to these discrete sets $D_i (i=12)$. Furthermore, we prove that the sets of zeros of the functions which map onto each other under the e-isomorphism $\Phi: A(G_1)\rightarrow A(G_2)$, are also mapped onto each other by a conformal mapping $\Phi: G_2\rightarrow G_1$, where $\Phi(f)=fo\phi$. |
---|---|
ISSN: | 1303-5991 |