On the modular integrals and their Mellin transforms
It is shown that if ${f}$ is an entire modular integral on $\Gamma(1)$ of weight k, with multiplier system $\nu$, then ${f}^m(\tau^r)$ is an entire modular integral on $\Gamma(1)$ of weight mk, with multiplier system $\nu$. A more general formula is obtained for the Mellin transforms. Some relations...
Gespeichert in:
Veröffentlicht in: | Communications Series A1 Mathematics & Statistics 2003, Vol.52 (1), p.7-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that if ${f}$ is an entire modular integral on $\Gamma(1)$ of weight k, with multiplier system $\nu$, then ${f}^m(\tau^r)$ is an entire modular integral on $\Gamma(1)$ of weight mk, with multiplier system $\nu$. A more general formula is obtained for the Mellin transforms. Some relations among the Mellin transforms of functions ${f}(\tau)$, ${f}^m(\tau^r)$ and ${f}^m(\tau^r/m^,,\chi)$ are also deduced. |
---|---|
ISSN: | 1303-5991 |