On the modular integrals and their Mellin transforms

It is shown that if ${f}$ is an entire modular integral on $\Gamma(1)$ of weight k, with multiplier system $\nu$, then ${f}^m(\tau^r)$ is an entire modular integral on $\Gamma(1)$ of weight mk, with multiplier system $\nu$. A more general formula is obtained for the Mellin transforms. Some relations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications Series A1 Mathematics & Statistics 2003, Vol.52 (1), p.7-11
Hauptverfasser: KIRMACI, U. S, ÖZDEMİR, M. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that if ${f}$ is an entire modular integral on $\Gamma(1)$ of weight k, with multiplier system $\nu$, then ${f}^m(\tau^r)$ is an entire modular integral on $\Gamma(1)$ of weight mk, with multiplier system $\nu$. A more general formula is obtained for the Mellin transforms. Some relations among the Mellin transforms of functions ${f}(\tau)$, ${f}^m(\tau^r)$ and ${f}^m(\tau^r/m^,,\chi)$ are also deduced.
ISSN:1303-5991