On weakly M-supplemented primary subgroups of finite groups
A subgroup H of a group G is said to be weakly M-supplemented in G if there exists a subgroup B of G provided that (1) G = HB, and (2) if H1/HG is a maximal subgroup of H/HG , then H1B = BH1 < G. where HG is the largest normal subgroup of G contained in H. In this paper we will prove that: Le...
Gespeichert in:
Veröffentlicht in: | Turkish journal of mathematics 2010-01, Vol.34 (4), p.489-500 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 500 |
---|---|
container_issue | 4 |
container_start_page | 489 |
container_title | Turkish journal of mathematics |
container_volume | 34 |
creator | MIAO, LONG LEMPKEN, WOLFGANG |
description | A subgroup H of a group G is said to be weakly M-supplemented in G if there exists a subgroup B of
G provided that (1) G = HB, and (2) if H1/HG is a maximal subgroup of H/HG , then H1B = BH1 < G.
where HG is the largest normal subgroup of G contained in H. In this paper we will prove that: Let F
be a saturated formation containing all supersolvable groups and G be a group with a normal subgroup H
such that G/H ∈ F. If every maximal subgroup of every noncyclic Sylow subgroup of F∗(H) having no
supersolvable supplement in G, is weakly M-supplemented in G, then G ∈ F. |
doi_str_mv | 10.3906/mat-0901-32 |
format | Article |
fullrecord | <record><control><sourceid>ulakbim_cross</sourceid><recordid>TN_cdi_ulakbim_primary_116731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>116731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-7208ea08780146e32b3751895f80ff1ba0444ebc9bf1530a9f181f94aacb1e343</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKsnz0LuEp3JZHcTPEmxKlR60XNI1kTW7hebXaT_vS0t6Ok93nsMw4-xa4Q7MpDfN24UYAAFyRM2QwISOSpz-s-fs4uUvgEkqUzP2MO65T_BbeotfxNp6vs6NKEdwyfvh6pxw5anyX8N3dQn3kUeq7YaAz8El-wsujqFq6PO2cfy6X3xIlbr59fF40qUMoNRFBJ0cKALDajyQNJTkaE2WdQQI3oHSqngS-MjZgTORNQYjXKu9BhI0ZzdHO5Otdv4qrHH1yxiXhDu-ttDXw5dSkOIfwOwey52x8XuuViS9Av001UU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On weakly M-supplemented primary subgroups of finite groups</title><source>EZB-FREE-00999 freely available EZB journals</source><source>TÜBİTAK Scientific Journals</source><creator>MIAO, LONG ; LEMPKEN, WOLFGANG</creator><creatorcontrib>MIAO, LONG ; LEMPKEN, WOLFGANG</creatorcontrib><description>A subgroup H of a group G is said to be weakly M-supplemented in G if there exists a subgroup B of
G provided that (1) G = HB, and (2) if H1/HG is a maximal subgroup of H/HG , then H1B = BH1 &lt; G.
where HG is the largest normal subgroup of G contained in H. In this paper we will prove that: Let F
be a saturated formation containing all supersolvable groups and G be a group with a normal subgroup H
such that G/H &#8712; F. If every maximal subgroup of every noncyclic Sylow subgroup of F&#8727;(H) having no
supersolvable supplement in G, is weakly M-supplemented in G, then G &#8712; F.</description><identifier>ISSN: 1303-6149</identifier><identifier>ISSN: 1300-0098</identifier><identifier>EISSN: 1303-6149</identifier><identifier>DOI: 10.3906/mat-0901-32</identifier><language>eng</language><publisher>TÜBİTAK</publisher><subject>Alt grup ; finite group ; Matematik ; Mathematics ; Sonlu grup ; Subgroup</subject><ispartof>Turkish journal of mathematics, 2010-01, Vol.34 (4), p.489-500</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27927,27928,27929</link.rule.ids></links><search><creatorcontrib>MIAO, LONG</creatorcontrib><creatorcontrib>LEMPKEN, WOLFGANG</creatorcontrib><title>On weakly M-supplemented primary subgroups of finite groups</title><title>Turkish journal of mathematics</title><description>A subgroup H of a group G is said to be weakly M-supplemented in G if there exists a subgroup B of
G provided that (1) G = HB, and (2) if H1/HG is a maximal subgroup of H/HG , then H1B = BH1 &lt; G.
where HG is the largest normal subgroup of G contained in H. In this paper we will prove that: Let F
be a saturated formation containing all supersolvable groups and G be a group with a normal subgroup H
such that G/H &#8712; F. If every maximal subgroup of every noncyclic Sylow subgroup of F&#8727;(H) having no
supersolvable supplement in G, is weakly M-supplemented in G, then G &#8712; F.</description><subject>Alt grup</subject><subject>finite group</subject><subject>Matematik</subject><subject>Mathematics</subject><subject>Sonlu grup</subject><subject>Subgroup</subject><issn>1303-6149</issn><issn>1300-0098</issn><issn>1303-6149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LAzEQxYMoWKsnz0LuEp3JZHcTPEmxKlR60XNI1kTW7hebXaT_vS0t6Ok93nsMw4-xa4Q7MpDfN24UYAAFyRM2QwISOSpz-s-fs4uUvgEkqUzP2MO65T_BbeotfxNp6vs6NKEdwyfvh6pxw5anyX8N3dQn3kUeq7YaAz8El-wsujqFq6PO2cfy6X3xIlbr59fF40qUMoNRFBJ0cKALDajyQNJTkaE2WdQQI3oHSqngS-MjZgTORNQYjXKu9BhI0ZzdHO5Otdv4qrHH1yxiXhDu-ttDXw5dSkOIfwOwey52x8XuuViS9Av001UU</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>MIAO, LONG</creator><creator>LEMPKEN, WOLFGANG</creator><general>TÜBİTAK</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100101</creationdate><title>On weakly M-supplemented primary subgroups of finite groups</title><author>MIAO, LONG ; LEMPKEN, WOLFGANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-7208ea08780146e32b3751895f80ff1ba0444ebc9bf1530a9f181f94aacb1e343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alt grup</topic><topic>finite group</topic><topic>Matematik</topic><topic>Mathematics</topic><topic>Sonlu grup</topic><topic>Subgroup</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MIAO, LONG</creatorcontrib><creatorcontrib>LEMPKEN, WOLFGANG</creatorcontrib><collection>CrossRef</collection><jtitle>Turkish journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MIAO, LONG</au><au>LEMPKEN, WOLFGANG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On weakly M-supplemented primary subgroups of finite groups</atitle><jtitle>Turkish journal of mathematics</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>34</volume><issue>4</issue><spage>489</spage><epage>500</epage><pages>489-500</pages><issn>1303-6149</issn><issn>1300-0098</issn><eissn>1303-6149</eissn><abstract>A subgroup H of a group G is said to be weakly M-supplemented in G if there exists a subgroup B of
G provided that (1) G = HB, and (2) if H1/HG is a maximal subgroup of H/HG , then H1B = BH1 &lt; G.
where HG is the largest normal subgroup of G contained in H. In this paper we will prove that: Let F
be a saturated formation containing all supersolvable groups and G be a group with a normal subgroup H
such that G/H &#8712; F. If every maximal subgroup of every noncyclic Sylow subgroup of F&#8727;(H) having no
supersolvable supplement in G, is weakly M-supplemented in G, then G &#8712; F.</abstract><pub>TÜBİTAK</pub><doi>10.3906/mat-0901-32</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1303-6149 |
ispartof | Turkish journal of mathematics, 2010-01, Vol.34 (4), p.489-500 |
issn | 1303-6149 1300-0098 1303-6149 |
language | eng |
recordid | cdi_ulakbim_primary_116731 |
source | EZB-FREE-00999 freely available EZB journals; TÜBİTAK Scientific Journals |
subjects | Alt grup finite group Matematik Mathematics Sonlu grup Subgroup |
title | On weakly M-supplemented primary subgroups of finite groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ulakbim_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20weakly%20M-supplemented%20primary%20subgroups%20of%20finite%20groups&rft.jtitle=Turkish%20journal%20of%20mathematics&rft.au=MIAO,%20LONG&rft.date=2010-01-01&rft.volume=34&rft.issue=4&rft.spage=489&rft.epage=500&rft.pages=489-500&rft.issn=1303-6149&rft.eissn=1303-6149&rft_id=info:doi/10.3906/mat-0901-32&rft_dat=%3Culakbim_cross%3E116731%3C/ulakbim_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |