On weakly M-supplemented primary subgroups of finite groups
A subgroup H of a group G is said to be weakly M-supplemented in G if there exists a subgroup B of G provided that (1) G = HB, and (2) if H1/HG is a maximal subgroup of H/HG , then H1B = BH1 < G. where HG is the largest normal subgroup of G contained in H. In this paper we will prove that: Le...
Gespeichert in:
Veröffentlicht in: | Turkish journal of mathematics 2010-01, Vol.34 (4), p.489-500 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A subgroup H of a group G is said to be weakly M-supplemented in G if there exists a subgroup B of
G provided that (1) G = HB, and (2) if H1/HG is a maximal subgroup of H/HG , then H1B = BH1 < G.
where HG is the largest normal subgroup of G contained in H. In this paper we will prove that: Let F
be a saturated formation containing all supersolvable groups and G be a group with a normal subgroup H
such that G/H ∈ F. If every maximal subgroup of every noncyclic Sylow subgroup of F∗(H) having no
supersolvable supplement in G, is weakly M-supplemented in G, then G ∈ F. |
---|---|
ISSN: | 1303-6149 1300-0098 1303-6149 |
DOI: | 10.3906/mat-0901-32 |