Entropy solutions of nonlinear elliptic equations with measurable boundary conditions and without strict monotonocity conditions
We prove some existence results for nonlinear degenerate elliptic problems of the form Au+ g(x, u) = f - divF, where $A(u) = -diva(x, u, \nabla u)$ is a Leray-Lions, operator defined form the weighted Sobolev space $W^{1,p}_0 (\Omega,w)$ into its dual. The right hand side, $f \in L^1(\Omega)$ and $F...
Gespeichert in:
Veröffentlicht in: | European journal of pure and applied mathematics 2008, Vol.1 (4), p.56-71 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove some existence results for nonlinear degenerate elliptic problems of the form
Au+ g(x, u) = f - divF,
where $A(u) = -diva(x, u, \nabla u)$ is a Leray-Lions, operator defined form the weighted Sobolev space
$W^{1,p}_0 (\Omega,w)$ into its dual. The right hand side, $f \in L^1(\Omega)$ and $F \in \prod\limits_{i=1}^{N} L^{p'}(\Omega,\omega^*_i)$. Note that the
Carathéodory function $a(x, s,\xi)$ satisfies only the large monotonicity instead of the monotonicity strict
condition. We overcome this difficulty by using the $L^1$-version of Minty's lemma. |
---|---|
ISSN: | 1307-5543 1307-5543 |