Larger Area Facilitates Richness-Function Effects in Experimental Microcosms

Species-area relationships (SAR) and biodiversity-ecosystem function (BEF) relationships are central patterns in community ecology. Although research on both patterns often invokes mechanisms of community assembly, both SARs and BEFs are generally treated as separate phenomena. Here we link the two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American naturalist 2019-05, Vol.193 (5), p.738-747
Hauptverfasser: DeLong, John P., Gibert, Jean P., Kerkhoff, Andrew J., Bolnick, Daniel I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Species-area relationships (SAR) and biodiversity-ecosystem function (BEF) relationships are central patterns in community ecology. Although research on both patterns often invokes mechanisms of community assembly, both SARs and BEFs are generally treated as separate phenomena. Here we link the two by creating an experimental SAR in microcosm communities and show that greater species richness in larger areas is accompanied by greater ecosystem function. We then explore mechanisms of community assembly by determining whether rare, large, or high-biomass species are more likely to persist in the larger microcosms. Our results indicate that larger areas harbor more rare species of a wider range of body sizes and have higher functional diversity, implying that the addition of niche space that supports rare species underlies the effect of area on species richness and function. Our results suggest that the preservation of large areas is a potentially useful way of maximizing the provisioning of ecosystem services through the maintenance of biodiversity.
ISSN:0003-0147
1537-5323
DOI:10.1086/702705