Characterization of add-on testing before and after automation at a core laboratory

Add-on testing refers to the process that occurs in clinical laboratories when clinicians request that additional tests be performed on a previously analysed specimen. This is a common but inefficient procedure, highly time-consuming, especially at core laboratories and could be optimised by automat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: García Osuna, Álvaro, Guiñón Muñoz, Leonor, Costa Pallaruelo, María, Mansilla Usero, Andrea, Cuevas Eduardo, Biel, Llanos Ramos, Judit, Canyelles, Marina, Martínez Brú, Cecília, Illana Cámara, Francisco José, Universitat Autònoma de Barcelona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Add-on testing refers to the process that occurs in clinical laboratories when clinicians request that additional tests be performed on a previously analysed specimen. This is a common but inefficient procedure, highly time-consuming, especially at core laboratories and could be optimised by automating these procedures. The aims of this study are: 1) To describe patterns of add-on testing at a core laboratory at a tertiary hospital, 2) To evaluate turnaround time (TAT) before and after automation of the pre-, post- and analytical phases. Retrospective, observational study conducted at the biochemistry area of a core laboratory of all add-on orders received in two different months (pre-automation and post-automation). A total of 2464 add-on orders were analysed, representing around 5 % of total requests. Most orders were for either one (>50 %) or two (≈20 %) tests. Most orders were received during the week (from Monday to Friday), particularly during the morning shift (>50 %). More than 50 % of requests were made by the Emergency Department. The two most common add-on parameters were C-reactive protein and N-terminal pro-brain natriuretic peptide. After automation, the median TAT decreased by 42.3 % (from 52 to 22 min). The largest decreases in TAT were observed for routine samples (58.89 %) and fully automated analyses (56.86 %). Automation of our core laboratory substantially reduced turnaround time for add-on testing, indicating an increase in efficiency. Automation eliminated several manual steps in the process, leading to a mean reduction of 15 work hours per day (more than 2 full-time equivalents).