Uniform convergence of {Hankel} transforms

We investigate necessary and/or sufficient conditions for the pointwise and uniform convergence of the weighted Hankel transforms [fórmula] where ν, μ ∈ R are such that 0 ≤ μ + ν ≤ α + 3/2. We subdivide these transforms into two classes in such a way that the uniform convergence criteria is remarkab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Debernardi Pinos, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate necessary and/or sufficient conditions for the pointwise and uniform convergence of the weighted Hankel transforms [fórmula] where ν, μ ∈ R are such that 0 ≤ μ + ν ≤ α + 3/2. We subdivide these transforms into two classes in such a way that the uniform convergence criteria is remarkably different on each class. In more detail, we have the transforms satisfying μ + ν = 0 (such as the classical Hankel transform), that generalize the cosine transform, and those satisfying 0 < μ + ν ≤ α + 3/2, generalizing the sine transform.