Contact geometry and isosystolic inequalities

A long-standing open problem asks whether a Riemannian metric on the real projective space with the same volume as the canonical metric carries a periodic geodesic whose length is at most π. A contact-geometric reformulation of systolic geometry and the use of canonical perturbation theory allow us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alvarez Paiva, Juan Carlos, Balacheff, Florent Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A long-standing open problem asks whether a Riemannian metric on the real projective space with the same volume as the canonical metric carries a periodic geodesic whose length is at most π. A contact-geometric reformulation of systolic geometry and the use of canonical perturbation theory allow us to solve a parametric version of this problem: if g s is a smooth, constant-volume deformation of the canonical metric that is not formally trivial, the length of the shortest periodic geodesic of the metric g s attains π as a strict local maximum at s = 0. This result still holds for complex and quaternionic projective spaces as well as for the Cayley plane. Moreover, the same techniques can be applied to show that Zoll Finsler manifolds are the unique smooth critical points of the systolic volume.