On Performance Analysis Of Diabetic Retinopathy Classification
This paper describes the Classification of bulk OCT retinal fundus images of normal and diabetic retinopathy using the Intensity histogram features, Gray Level Co-Occurrence Matrix (GLCM), and the Gray Level Run Length Matrix (GLRLM) feature extraction techniques. Three features-Intensity histogram...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes the Classification of bulk OCT retinal fundus images of normal and diabetic retinopathy using the Intensity histogram features, Gray Level Co-Occurrence Matrix (GLCM), and the Gray Level Run Length Matrix (GLRLM) feature extraction techniques. Three features-Intensity histogram features, GLCM, and GLRLM were taken and, that features were compared fairly. A total of 301 bulk OCT retinal fundus color images were taken for two different varieties which are normal and diabetic retinopathy. For classification and feature extraction, a filtered image output based on a fourth-order PDE is used. Using OCT retinal fundus images, the most effective feature extraction method is identified. |
---|