Oscillatory phenomena for higher-order fractional Laplacians
We collect some peculiarities of higher-order fractional Laplacians (−∆)s , s > 1, with special attention to the range s ∈ (1, 2), which show their oscillatory nature. These include the failure of the polarization and P'olya-Szeg˝o inequalities and the explicit example of a domain with sign-...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We collect some peculiarities of higher-order fractional Laplacians (−∆)s , s > 1, with special attention to the range s ∈ (1, 2), which show their oscillatory nature. These include the failure of the polarization and P'olya-Szeg˝o inequalities and the explicit example of a domain with sign-changing first eigenfunction. In spite of these fluctuating behaviours, we prove how the Faber-Krahn inequality still holds for any s > 1 in dimension one. |
---|