Oscillatory phenomena for higher-order fractional Laplacians

We collect some peculiarities of higher-order fractional Laplacians (−∆)s , s > 1, with special attention to the range s ∈ (1, 2), which show their oscillatory nature. These include the failure of the polarization and P'olya-Szeg˝o inequalities and the explicit example of a domain with sign-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abatangelo, Nicola, Jarohs, Sven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We collect some peculiarities of higher-order fractional Laplacians (−∆)s , s > 1, with special attention to the range s ∈ (1, 2), which show their oscillatory nature. These include the failure of the polarization and P'olya-Szeg˝o inequalities and the explicit example of a domain with sign-changing first eigenfunction. In spite of these fluctuating behaviours, we prove how the Faber-Krahn inequality still holds for any s > 1 in dimension one.