Control of magnetic vortex states in FeGa microdisks : Experiments and micromagnetics
Magnetic vortices have been an interesting element in the past decades due to their flux-closure domain structures which can be stabilized at ground states in soft ferromagnetic microstructures. In this work, vortex states are shown to be nucleated and stabilized in FeGa and FeGa disks, which can be...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetic vortices have been an interesting element in the past decades due to their flux-closure domain structures which can be stabilized at ground states in soft ferromagnetic microstructures. In this work, vortex states are shown to be nucleated and stabilized in FeGa and FeGa disks, which can be an upcoming candidate for applications in strain-induced electric field control of magnetic states owing to the high magnetostriction of the alloy. The magnetization reversal in the disks occurs by the formation of a vortex, double vortex or S-domain state. Micromagnetic simulations have been performed using the FeGa material parameters and the simulated magnetic states are in good agreement with the experimental results. The studies performed here can be essential for the use of FeGa alloy in low-power electronics. |
---|