Parrondo's paradox for homoeomorphisms

We construct two planar homoeomorphisms f and g for which the origin is a globally asymptotically stable fixed point whereas for f∘g and g∘f the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by f and g where each of the maps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gasull, Armengol, Hernández-Corbato, L, Ruiz Del Portal, F. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct two planar homoeomorphisms f and g for which the origin is a globally asymptotically stable fixed point whereas for f∘g and g∘f the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by f and g where each of the maps appears with a certain probability. This planar construction is also extended to any dimension > 2 and proves for first time the appearance of the dynamical Parrondo's paradox in odd dimensions.