Comparison between two reactors using Trametes versicolor for agricultural wastewater treatment under non-sterile condition in sequencing batch mode
Altres ajuts: acords transformatius de la UAB Agricultural wastewater is a major source of herbicides, which pose environmental and health concerns owing to their substantial use and poor elimination rate in conventional wastewater treatment plants. White-rot fungi are versatile in degrading xenobio...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Altres ajuts: acords transformatius de la UAB
Agricultural wastewater is a major source of herbicides, which pose environmental and health concerns owing to their substantial use and poor elimination rate in conventional wastewater treatment plants. White-rot fungi are versatile in degrading xenobiotics; however, the key problem encountered with their application in actual scenarios is competition with indigenous microorganisms, mainly bacteria. To address this barrier, two different strategies were implemented in the present study. One strategy was to set up a trickle bed with Trametes versicolor immobilized on pine wood, and another strategy was to employ a T. versicolor-pelleted, fluidized-bed reactor to remove diuron and bentazon from actual wastewater under non-sterile conditions. The residence time in the trickle bed was estimated using three methodologies. With 10 batches of a 3-day cycle operation, although the trickle-bed reactor possessed a shorter contact time (8.5 h per cycle) and lower laccase activity compared with those of the fluidized-bed reactor, it demonstrated a higher removal yield and lower bacterial counts. In addition, the utilization of pine wood as a carrier obviously reduced the cost since no additional nutrients were required. Hence, after evaluating all advantages and limitations of both bioreactors, for the purpose of treating over the long term and scaling up, a trickle-bed reactor is the preferred choice. |
---|