New family of cubic Hamiltonian centers

We characterize the 11 non topological equivalent classes of phase portraits in the Poincaré disc of the new family of cubic polynomial Hamiltonian differential systems with a center at the origin and Hamiltonian H=1/2((x+ax2+bxy+cy2)2+y2), with a2+b2+c2≠0.

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Frías-Armenta, Martín-Eduardo, Llibre, Jaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We characterize the 11 non topological equivalent classes of phase portraits in the Poincaré disc of the new family of cubic polynomial Hamiltonian differential systems with a center at the origin and Hamiltonian H=1/2((x+ax2+bxy+cy2)2+y2), with a2+b2+c2≠0.