New family of cubic Hamiltonian centers
We characterize the 11 non topological equivalent classes of phase portraits in the Poincaré disc of the new family of cubic polynomial Hamiltonian differential systems with a center at the origin and Hamiltonian H=1/2((x+ax2+bxy+cy2)2+y2), with a2+b2+c2≠0.
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize the 11 non topological equivalent classes of phase portraits in the Poincaré disc of the new family of cubic polynomial Hamiltonian differential systems with a center at the origin and Hamiltonian H=1/2((x+ax2+bxy+cy2)2+y2), with a2+b2+c2≠0. |
---|