Decreased meta-memory is associated with early tauopathy in cognitively unimpaired older adults
The ability to accurately judge memory efficiency (meta-memory monitoring) for newly learned (episodic) information, is decreased in older adults and even worse in Alzheimer's disease (AD), whereas no differences have been found for semantic meta-memory. The pathological substrates of this phen...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability to accurately judge memory efficiency (meta-memory monitoring) for newly learned (episodic) information, is decreased in older adults and even worse in Alzheimer's disease (AD), whereas no differences have been found for semantic meta-memory. The pathological substrates of this phenomenon are poorly understood. Here, we examine the association between meta-memory monitoring for episodic and semantic information to the two major proteinopathies in AD: amyloid (Aβ) and tau pathology in a group of cognitively unimpaired older adults. All participants underwent multi-tracer PET and meta-memory monitoring was assessed using a feeling-of-knowing (FOK) task for non-famous (episodic) and famous (semantic) face-name pairs. Whole brain voxel-wise correlations between meta-memory and PET data were conducted (controlling for memory), as well as confirmatory region-of-interest analyses. Participants had reduced episodic FOK compared to semantic FOK. Decreased episodic FOK was related to tauopathy in the medial temporal lobe regions, including the entorhinal cortex and temporal pole, whereas decreased semantic FOK was related to increased tau in regions associated with the semantic knowledge network. No association was found with Aβ-pathology. Alterations in the ability to accurately judge memory efficiency (in the absence of memory decline) may be a sensitive clinical indicator of AD pathophysiology in the pre-symptomatic phase. |
---|