On the set of periods of the 2-periodic Lyness' equation
Publicació amb motiu de la International Conference on Difference Equations and Applications (July 22-27, 2012, Barcelona, Spain) amb el títol Difference Equations, Discrete Dynamical Systems and Applications We study the periodic solutions of the non-autonomous periodic Lyness' recurrence u =...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Web Resource |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Publicació amb motiu de la International Conference on Difference Equations and Applications (July 22-27, 2012, Barcelona, Spain) amb el títol Difference Equations, Discrete Dynamical Systems and Applications
We study the periodic solutions of the non-autonomous periodic Lyness' recurrence u = (a + u )/u, where {a} is a cycle with positive values a,b and with positive initial conditions. Among other methodological issues we give an outline of the proof of the following results: (1) If (a, b) ≠ (1, 1), then there exists a value p(a, b) such that for any p > p(a, b) there exist continua of initial conditions giving rise to 2p-periodic sequences. (2) The set of minimal periods arising when (a, b) ∈ (0,∞) and positive initial conditions are considered, contains all the even numbers except 4, 6, 8, 12 and 20. If a ≠ b, then it does not appear any odd period, except 1. |
---|