Protein S Thr103Asn Mutation Associated with Type II Deficiency Reproduced In Vitro and Functionally Characterised

Summary Protein S functions as a cofactor to activated protein C (APC) in the degradation of FVa and FVIIIa. In protein S, the thrombin sensitive region (TSR) and the first EGF-like domain are important for expression of the APC cofactor activity. A naturally occurring Thr103Asn (T103N) mutation in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thrombosis and haemostasis 2000-09, Vol.84 (3), p.413-419
Hauptverfasser: Giri, T K, García de Frutos, P, Dahlbäck, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Protein S functions as a cofactor to activated protein C (APC) in the degradation of FVa and FVIIIa. In protein S, the thrombin sensitive region (TSR) and the first EGF-like domain are important for expression of the APC cofactor activity. A naturally occurring Thr103Asn (T103N) mutation in the first EGF-like domain of protein S has been associated with functional (type II) protein S deficiency. To elucidate the functional consequences of the T103N mutation, recombinant protein S mutant was expressed in mammalian cells and functionally characterised. The expression level of protein S T103N from transiently transfected COS 1 cells was equal to that of wild type protein S. The mutant protein S and wild type protein S were also expressed in 293 cells after stable transfection, and the recombinant proteins purified. In APTT-and PT-based coagulation assays, the mutant protein demonstrated approximately 50% lower anticoagulant activity as compared to wild type protein S. The functional defect was further investigated in FVa-and FVIIIa-degradation assays. The functional defect of mutant protein S was attenuated at increasing concentrations of APC. The results demonstrate the region around residue 103 of protein S to be of functional importance, possibly through a direct interaction with APC.
ISSN:0340-6245
2567-689X
DOI:10.1055/s-0037-1614037