Aging promotes accumulation of senescent and multiciliated cells in human endometrial epithelium
Abstract STUDY QUESTION What changes occur in the endometrium during aging, and do they impact fertility? SUMMARY ANSWER Both the transcriptome and cellular composition of endometrial samples from women of advanced maternal age (AMA) are significantly different from that of samples from young women,...
Gespeichert in:
Veröffentlicht in: | HUMAN REPRODUCTION OPEN 2024, Vol.2024 (3), p.hoae048 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
STUDY QUESTION
What changes occur in the endometrium during aging, and do they impact fertility?
SUMMARY ANSWER
Both the transcriptome and cellular composition of endometrial samples from women of advanced maternal age (AMA) are significantly different from that of samples from young women, suggesting specific changes in epithelial cells that may affect endometrial receptivity.
WHAT IS KNOWN ALREADY
Aging is associated with the accumulation of senescent cells in aging tissues. Reproductive aging is mostly attributed to the decline in ovarian reserve and oocyte quality, whereas the endometrium is a unique complex tissue that is monthly renewed under hormonal regulation. Several clinical studies have reported lower implantation and pregnancy rates in oocyte recipients of AMA during IVF. Molecular studies have indicated the presence of specific mutations within the epithelial cells of AMA endometrium, along with altered gene expression of bulk endometrial tissue.
STUDY DESIGN, SIZE, DURATION
Endometrial transcriptome profiling was performed for 44 women undergoing HRT during the assessment of endometrial receptivity before IVF. Patients younger than 28 years were considered as the young maternal age (YMA) group (age 23–27 years) and women older than 45 years were considered as the AMA group (age 47–50 years). Endometrial biopsies were obtained on Day 5 of progesterone treatment and RNA was extracted. All endometrial samples were evaluated as being receptive based on the expression of 68 common endometrial receptivity markers. Endometrial samples from another 24 women classified into four age groups (YMA, intermediate age group 1 (IMA1, age 29–35), intermediate age group 2 (IMA2, age 36–44), and AMA) were obtained in the mid-secretory stage of a natural cycle (NC) and used for validation studies across the reproductive lifespan.
PARTICIPANTS/MATERIALS, SETTING, METHODS
A total of 24 HRT samples (12 YMA and 12 AMA) were subject to RNA sequencing (RNA-seq) and differential gene expression analysis, 20 samples (10 YMA and 10 AMA) were used for qPCR validation, and 24 NC samples (6 YMA, 6 IMA1, 6 IMA2 and 6AMA) were used for RNA-seq validation of AMA genes across the woman’s reproductive lifespan. Immunohistochemistry (IHC) was used to confirm some expression changes at the protein level. Computational deconvolution using six endometrial cell type-specific transcriptomic profiles was conducted to compare the cellular composition between the groups.
MAIN R |
---|---|
ISSN: | 2399-3529 2399-3529 |
DOI: | 10.1093/hropen/hoae048 |