A two-stage hierarchical regression model for meta-analysis of epidemiologic nonlinear dose–response data

To estimate a summarized dose–response relation across different exposure levels from epidemiologic data, meta-analysis often needs to take into account heterogeneity across studies beyond the variation associated with fixed effects. We extended a generalized-least-squares method and a multivariate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2009-10, Vol.53 (12), p.4157-4167
Hauptverfasser: Liu, Qin, Cook, Nancy R., Bergström, Anna, Hsieh, Chung-Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To estimate a summarized dose–response relation across different exposure levels from epidemiologic data, meta-analysis often needs to take into account heterogeneity across studies beyond the variation associated with fixed effects. We extended a generalized-least-squares method and a multivariate maximum likelihood method to estimate the summarized nonlinear dose–response relation taking into account random effects. These methods are readily suited to fitting and testing models with covariates and curvilinear dose–response relations.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2009.05.001