Karonudib Has Potent Anti-Tumor Effects in Preclinical Models of B-Cell Lymphoma

Although chemo-immunotherapy has improved survival in B-cell lymphoma patients, refractory and relapsed disease still represents a major challenge, urging for development of new therapeutics. A new approach is to target nucleotide metabolism. Karonudib (TH1579), was developed to inhibit MutT-homolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2020-11, Vol.136 (Supplement 1), p.18-19
Hauptverfasser: Oksvold, Morten P, Warpman Berglund, Ulrika, Gad, Helge, Bai, Baoyan, Stokke, Trond, Rein, Idun D, Pham, Therese, Sanjiv, Kumar, Øy, Geir Frode, Norum, Jens Henrik, Smeland, Erlend B., Myklebust, June Helen, Helleday, Thomas, Våtsveen, Thea Kristin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although chemo-immunotherapy has improved survival in B-cell lymphoma patients, refractory and relapsed disease still represents a major challenge, urging for development of new therapeutics. A new approach is to target nucleotide metabolism. Karonudib (TH1579), was developed to inhibit MutT-homologue-1/Nudix hydrolase 1 (MTH1/NUDT1), an enzyme that prevents oxidized nucleotides to be incorporated into DNA. Under normal conditions with low reactive oxygen species (ROS) burden, MTH1 is not essential for cell survival. This contrasts cancer cells which frequently upregulate MTH1 to compensate for increased ROS with corresponding higher oxidized nucleotide levels, and therefore become more susceptible for MTH1 inhibition. Here, our aim was to perform preclinical testing of karonudib in B-cell lymphoma. Using two different gene expression datasets, we demonstrate that NUDT1, the gene encoding MTH1, was highly upregulated in tumor biopsies from patients with diffuse large B-cell lymphoma (DLBCL) and Burkitt’s lymphoma as compared to follicular lymphoma and peripheral blood B cells from healthy donors, hence demonstrating a rationale for targeting MTH1 in aggressive B-cell lymphoma. We tested the efficacy of karonudib (0.06-1 µM) in vitro in a range of B-cell lymphoma cell lines using CellTiterGlo and by flow cytometry detection of active caspase-3 and TUNEL to identify apoptotic cells. Karonudib strongly reduced viability in all B-cell lymphoma cell lines tested (n = 12) and induced apoptosis at concentrations well tolerated by peripheral blood B cells from healthy donors. Cell cycle analysis and microscopy revealed that most cells arrested in prometaphase in the presence of karonudib. Failed spindle assembly led to mitotic arrest and subsequent apoptosis. Prometaphase arrest was seen in TP53 mutant as well as in TP53 wild type cell lines, confirming that karonudib induced apoptosis independent of TP53 mutational status. To test the efficacy of karonudib in vivo, we utilized two different lymphoma xenograft models, including an ABC DLBCL patient-derived model. Mice were treated with karonudib (90 mg/kg) or vehicle b.i.d, three times a week and tumor growth was monitored by in vivo imaging system or MR. In both models, karonudib as single agent completely controlled tumor growth, and significantly prolonged survival (p
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2020-140943