Identification of an anti-mycobacterial domain in NK-lysin and granulysin

NK-lysin and granulysin are homologous cationic anti-bacterial peptides produced by pig and human cytolytic lymphocytes, respectively. The solution structure of NK-lysin comprises five amphipathic alpha-helices. To investigate the properties of a helix-loop-helix region postulated to be a membrane-d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 1999-12, Vol.344 Pt 3 (3), p.845-849
Hauptverfasser: Andreu, D, Carreño, C, Linde, C, Boman, H G, Andersson, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:NK-lysin and granulysin are homologous cationic anti-bacterial peptides produced by pig and human cytolytic lymphocytes, respectively. The solution structure of NK-lysin comprises five amphipathic alpha-helices. To investigate the properties of a helix-loop-helix region postulated to be a membrane-docking part of NK-lysin, we synthesized 22- and 29-residue peptides reproducing this region for both NK-lysin and granulysin. CD spectroscopy of the synthetic peptides in a liposomal solution showed spectra typical of alpha-helical peptides. The peptides were active against Gram-positive and Gram-negative bacteria, with the two NK-lysin peptides showing higher anti-bacterial activities than the two from granulysin. One NK-lysin peptide was active against Pseudomonas aeruginosa and Staphylococcus aureus, two organisms against which NK-lysin is inactive. Granulysin peptides were inactive against these bacteria, in contrast with granulysin, which is known to be active against them. Both NK-lysin and all synthetic analogues killed Mycobacterium tuberculosis and K562 tumour cells, but did not display haemolytic activity. These results identify a potent anti-mycobacterial domain in NK-lysin and granulysin consisting of a 22-residue (helix 3) sequence plus a disulphide-constrained loop.
ISSN:0264-6021
1470-8728
DOI:10.1042/0264-6021:3440845