Fission yeast Hrp1, a chromodomain ATPase, is required for proper chromosome segregation and its overexpression interferes with chromatin condensation

Hrp1 of Schizosaccharomyces pombe is a member of the CHD protein family, characterized by a chromodomain, a Myb-like telobox-related DNA-binding domain and a SNF2-related helicase/ATPase domain. CHD proteins are thought to be required for modification of the chromatin structure in transcription, but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2000-05, Vol.28 (9), p.2004-2011
Hauptverfasser: Yoo, E.J, Jin, Y.H, Jang, Y.K, Bjerling, P, Tabish, M, Hong, S.H, Ekwall, K, Park, S.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hrp1 of Schizosaccharomyces pombe is a member of the CHD protein family, characterized by a chromodomain, a Myb-like telobox-related DNA-binding domain and a SNF2-related helicase/ATPase domain. CHD proteins are thought to be required for modification of the chromatin structure in transcription, but the exact roles of CHD proteins are not known. Here we examine the sub-cellular localization and biochemical activity of Hrp1 and the phenotypes of hrp1 Delta and Hrp1-overexpressing strains. Fluorescence microscopy revealed that Hrp1 protein is targeted to the nucleus. We found that Hrp1 exhibited DNA-dependent ATPase activity, stimulated by both single- and double-stranded DNA. Overexpression of Hrp1 caused slow cell growth accompanied by defective chromosome condensation in anaphase resulting in a 'cut' (celluntimelytorn) phenotype and chromosome loss. The hrp1 Delta mutation also caused abnormal anaphase and mini-chromosome loss phenotypes. Electron micrographs demonstrated that aberrantly shaped nucleoli appeared in Hrp1-overexpressing cells. Therefore, these results suggest that Hrp1 may play a role in mitotic chromosome segregation and maintenance of chromatin structure by utilizing the energy from ATP hydrolysis.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/28.9.2004