Very low surfactant protein C contents in newborn Belgian White and Blue calves with respiratory distress syndrome
We have studied a respiratory distress syndrome (RDS) occurring in newborn calves of the Belgian White and Blue (BWB) breed that represents the large majority of beef cattle in Belgium. Pulmonary surfactant isolated from 14 BWB newborn calves that died from RDS and from 7 healthy controls was analys...
Gespeichert in:
Veröffentlicht in: | Biochemical journal 2000-11, Vol.351 Pt 3 (3), p.779-787 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have studied a respiratory distress syndrome (RDS) occurring in newborn calves of the Belgian White and Blue (BWB) breed that represents the large majority of beef cattle in Belgium. Pulmonary surfactant isolated from 14 BWB newborn calves that died from RDS and from 7 healthy controls was analysed for composition and surface activity. An extremely low content or, in some instances, an absence of surfactant protein C (SP-C) was detected in the RDS samples by Western blotting and differential amino acid analysis [0.03+/-0.01% (w/w) relative to total phospholipids, compared with 0.39+/-0.06% for healthy controls (means+/-S.E.M., P < 0.001)]. The contents of surfactant protein B (SP-B) were similar in RDS and control samples. The crude surfactant samples isolated from RDS calves had higher ratios of total protein to total phospholipid, altered phospholipid profiles and lower SP-A contents. Both crude and organic extracts of RDS surfactant samples showed increased dynamic surface tension compared with healthy controls when evaluated with a pulsating-bubble surfactometer. The addition of purified SP-C to organic extracts of RDS surfactant samples lowered surface tension. Strongly decreased levels of mature SP-C associated with fatal RDS and altered surface activity in vitro have, to the best of our knowledge, not been previously reported. The mechanisms underlying RDS and the decrease in SP-C in BWB calves remain to be established. |
---|---|
ISSN: | 0264-6021 1470-8728 1470-8728 |
DOI: | 10.1042/0264-6021:3510779 |