Metabolic changes in the liver graft monitored continuously with microdialysis during liver transplantation in a pig model
Microdialysis provides the opportunity to continuously monitor metabolic changes in tissue. The aim of the study is to monitor metabolic changes in the liver graft over time during transplantation in a pig model. Fourteen littermate female pigs with a body weight of 30 to 34 kg were used for seven o...
Gespeichert in:
Veröffentlicht in: | Liver transplantation 2002-05, Vol.8 (5), p.424-432 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microdialysis provides the opportunity to continuously monitor metabolic changes in tissue. The aim of the study is to monitor metabolic changes in the liver graft over time during transplantation in a pig model. Fourteen littermate female pigs with a body weight of 30 to 34 kg were used for seven orthotopic liver transplantations. Intrahepatic implantation of a microdialysis catheter into the liver graft was performed in the donor. Microdialysis samples were collected at 20-minute intervals during the donor operation, cold preservation, and for 7 hours after reperfusion in the recipient. Glucose, lactate, pyruvate, and glycerol concentrations were measured. After cold perfusion, glucose, lactate, and glycerol levels increased, whereas pyruvate levels decreased rapidly. During cold storage, glucose and glycerol levels increased, whereas lactate levels remained stable and pyruvate levels were undetectable. During implantation of the liver graft, glucose, lactate, and glycerol levels showed an accelerated increase. After portal reperfusion, glucose, lactate, and glycerol levels continued to increase for another 40 to 60 minutes, after which they decreased and finally settled at normal levels. At this time, pyruvate levels increased, with a peak within 2 hours after reperfusion, and then decreased to normal levels. Calculated lactate-pyruvate ratio increased after cold perfusion and remained stable during cold storage. During rewarming, it showed an accelerated increase, but after reperfusion, it decreased rapidly. Rewarming and reperfusion are most harmful to the liver, reflected by an accelerated increase in glucose and glycerol levels and lactate-pyruvate ratio. High intrahepatic glucose levels during ischemia appear to be a liver-specific event, which may represent glycogen degradation in injured hepatocytes. (Liver Transpl 2002;8:424-432.) |
---|---|
ISSN: | 1527-6465 1527-6473 |
DOI: | 10.1053/jlts.2002.32943 |