Differences between children and adults in thiopurine methyltransferase activity and metabolite formation during thiopurine therapy: Possible role of concomitant methotrexate

This study examined the role of thiopurine methyltransferase (TPMT) polymorphism in the metabolism and clinical effects of azathioprine and 6-mercaptopurine in the treatment of inflammatory bowel disease and childhood leukemia. The current hypothesis is that the cytotoxic effects of thiopurines are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Therapeutic drug monitoring 2002-06, Vol.24 (3), p.351-358
Hauptverfasser: PETTERSSON, Birgitta, ALMER, Sven, ALBERTIONI, Freidoun, SÖDERHÄLL, Stefan, PETERSON, Curt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study examined the role of thiopurine methyltransferase (TPMT) polymorphism in the metabolism and clinical effects of azathioprine and 6-mercaptopurine in the treatment of inflammatory bowel disease and childhood leukemia. The current hypothesis is that the cytotoxic effects of thiopurines are caused by the incorporation of thioguanine nucleotides into DNA. In this context, S-methylation catalyzed by TPMT can be regarded as a competing metabolic pathway. The authors assayed the TPMT activity in red blood cells from 122 patients treated with azathioprine or 6-mercaptopurine (83 adults with inflammatory bowel disease and 39 children with acute lymphoblastic leukemia) and in 290 untreated controls (219 adult blood donors and 71 children). The concentrations of thioguanine nucleotides and methylthioinosine monophosphate were also assayed in red blood cells from the patients. The TPMT activity and the concentrations of methylthioinosine monophosphate and thioguanine nucleotides were higher in children than in adults. All children but no adult patient received concomitant methotrexate. Interaction between methotrexate and 6-mercaptopurine has been described, and may explain the results. Low TPMT activity in adult patients with inflammatory bowel disease correlated to an increased incidence of adverse drug reactions. However, there was no correlation between TPMT activity and the red blood cell concentrations of methylthioinosine monophosphate or thioguanine nucleotides, or between the concentrations of these metabolites and the occurrence of adverse effects. The results show that the role of thiopurine metabolism for drug effects is complex.
ISSN:0163-4356
1536-3694
1536-3694
DOI:10.1097/00007691-200206000-00005