Endothelial cell surface ATP synthase-triggered caspase-apoptotic pathway is essential for K1-5-induced antiangiogenesis
We have recently reported the identification of kringle 1-5 (K1-5) of plasminogen as a potent and specific inhibitor of angiogenesis and tumor growth. Here, we show that K1-5 bound to endothelial cell surface ATP synthase and triggered caspase-mediated endothelial cell apoptosis. Induction of endoth...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2004-05, Vol.64 (10), p.3679-3686 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have recently reported the identification of kringle 1-5 (K1-5) of plasminogen as a potent and specific inhibitor of angiogenesis and tumor growth. Here, we show that K1-5 bound to endothelial cell surface ATP synthase and triggered caspase-mediated endothelial cell apoptosis. Induction of endothelial apoptosis involved sequential activation of caspases-8, -9, and -3. Administration of neutralizing antibodies directed against the alpha- and beta-subunits of ATP synthase to endothelial cells attenuated activation of these caspases. Furthermore, inhibitors of caspases-3, -8, and -9 also remarkably blocked K1-5-induced endothelial cell apoptosis and antiangiogenic responses. In a mouse tumor model, we show that caspase-3 inhibitors abolished the antitumor activity of K1-5 by protecting the tumor vasculature undergoing apoptosis. These results suggest that the specificity of the antiendothelial effect of K1-5 is attributable, at least in part, to its interaction with the endothelial cell surface ATP synthase and that the caspase-mediated endothelial apoptosis is essential for the angiostatic activity of K1-5. Thus, our findings provide a mechanistic insight with respect to the angiostatic action and signaling pathway of K1-5 and angiostatin. |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.CAN-03-1754 |