Effects of calcineurin activation on insulin-, AICAR- and contraction-induced glucose transport in skeletal muscle

Skeletal muscle is composed of fast- and slow-twitch fibres with distinctive physiological and metabolic properties. The calmodulin-activated serine/threonine protein phosphatase calcineurin activates fast- to slow-twitch skeletal muscle remodelling through the induction of the slow-twitch skeletal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2005-09, Vol.567 (2), p.379-386
Hauptverfasser: Ryder, Jeffrey W., Long, Yun Chau, Nilsson, Elisabeth, Mahlapuu, Margit, Zierath, Juleen R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Skeletal muscle is composed of fast- and slow-twitch fibres with distinctive physiological and metabolic properties. The calmodulin-activated serine/threonine protein phosphatase calcineurin activates fast- to slow-twitch skeletal muscle remodelling through the induction of the slow-twitch skeletal muscle fibre gene expression programme, thereby enhancing insulin-stimulated glucose uptake and offering protection against dietary-induced insulin resistance. Given the profound influence of skeletal muscle fibre type on insulin-mediated responses, we determined whether the fast- to slow-twitch fibre-type transformation leads to alterations in insulin-independent glucose uptake in transgenic mice expressing a constitutively active form of calcineurin (MCK-CnA* mice). We determined whether skeletal muscle remodelling by activated calcineurin alters glucose transport in response to the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-β- d -ribofuranoside (AICAR) or muscle contraction, two divergent insulin-independent activators of glucose transport. While insulin-stimulated glucose transport was increased 52%, the AICAR effect on glucose transport was 27% lower in MCK-CnA* mice versus wild-type mice ( P < 0.05). In contrast, glucose transport was similar between genotypes after in vitro muscle contraction. Fibre-type transformation was associated with increased AMPKγ1, decreased AMPKγ3 and unchanged AMPKγ2 protein expression between MCK-CnA* and wild-type mice ( P < 0.05). The loss of AICAR-mediated glucose uptake is coupled to changes in the AMPK isoform expression, suggesting fibre-type dependence of the AICAR responses on glucose uptake. In conclusion, improvements in skeletal muscle glucose transport in response to calcineurin-induced muscle remodelling are limited to insulin action.
ISSN:0022-3751
1469-7793
DOI:10.1113/jphysiol.2005.090829