Nitrite as regulator of hypoxic signaling in mammalian physiology

In this review we consider the effects of endogenous and pharmacological levels of nitrite under conditions of hypoxia. In humans, the nitrite anion has long been considered as metastable intermediate in the oxidation of nitric oxide radicals to the stable metabolite nitrate. This oxidation cascade...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medicinal research reviews 2009-09, Vol.29 (5), p.683-741
Hauptverfasser: van Faassen, Ernst E., Bahrami, Soheyl, Feelisch, Martin, Hogg, Neil, Kelm, Malte, Kim-Shapiro, Daniel B., Kozlov, Andrey V., Li, Haitao, Lundberg, Jon O., Mason, Ron, Nohl, Hans, Rassaf, Tienush, Samouilov, Alexandre, Slama-Schwok, Anny, Shiva, Sruti, Vanin, Anatoly F., Weitzberg, Eddie, Zweier, Jay, Gladwin, Mark T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this review we consider the effects of endogenous and pharmacological levels of nitrite under conditions of hypoxia. In humans, the nitrite anion has long been considered as metastable intermediate in the oxidation of nitric oxide radicals to the stable metabolite nitrate. This oxidation cascade was thought to be irreversible under physiological conditions. However, a growing body of experimental observations attests that the presence of endogenous nitrite regulates a number of signaling events along the physiological and pathophysiological oxygen gradient. Hypoxic signaling events include vasodilation, modulation of mitochondrial respiration, and cytoprotection following ischemic insult. These phenomena are attributed to the reduction of nitrite anions to nitric oxide if local oxygen levels in tissues decrease. Recent research identified a growing list of enzymatic and nonenzymatic pathways for this endogenous reduction of nitrite. Additional direct signaling events not involving free nitric oxide are proposed. We here discuss the mechanisms and properties of these various pathways and the role played by the local concentration of free oxygen in the affected tissue. © 2009 Wiley Periodicals, Inc. Med Res Rev, 29, No. 5, 683–741, 2009
ISSN:0198-6325
1098-1128
1098-1128
DOI:10.1002/med.20151