Oxysterols and neurodegenerative diseases
In contrast to their parent molecule cholesterol, two of its side-chain oxidized metabolites are able to cross the blood–brain barrier. There is a concentration-driven flux of 24S-hydroxycholesterol (24S-OHC) from the brain into the circulation, which is of major importance for elimination of excess...
Gespeichert in:
Veröffentlicht in: | Molecular aspects of medicine 2009-06, Vol.30 (3), p.171-179 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In contrast to their parent molecule cholesterol, two of its side-chain oxidized metabolites are able to cross the blood–brain barrier. There is a concentration-driven flux of 24S-hydroxycholesterol (24S-OHC) from the brain into the circulation, which is of major importance for elimination of excess cholesterol from the brain. The opposite flux of 27-hydroxycholesterol (27-OHC) from the circulation into the brain may regulate a number of key enzymes within the brain.
In vitro experiments suggest that the balance between the levels of these two molecules may be of importance for the generation of β-amyloid peptides. In primary cultures of rat hippocampal cells 27-OHC is able to suppress expression of the activity regulated cytoskeleton-associated protein (Arc), a protein important in memory consolidation which is reduced in patients with Alzheimer’s disease (AD). In the present work we explore the possibility that the flux of 27-OHC from the circulation into the brain represents the missing link between AD and hypercholesterolemia, and discuss the possibility that modification of this flux may be a therapeutic strategy. Lastly, we discuss the use of oxysterols as diagnostic markers in neurodegenerative disease. |
---|---|
ISSN: | 0098-2997 1872-9452 1872-9452 |
DOI: | 10.1016/j.mam.2009.02.001 |