Essential role of mitochondria in apoptosis of cancer cells induced by the marine alkaloid Lamellarin D
Lamellarin D, a potent cytotoxic marine alkaloid, exerts its antitumor action through two complementary pathways: a nuclear route via topoisomerase I inhibition and a mitochondrial targeting. The present study was designed to investigate the contribution of these two pathways for apoptosis in cancer...
Gespeichert in:
Veröffentlicht in: | Molecular cancer therapeutics 2009-12, Vol.8 (12), p.3307-3317 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lamellarin D, a potent cytotoxic marine alkaloid, exerts its antitumor action through two complementary pathways: a nuclear
route via topoisomerase I inhibition and a mitochondrial targeting. The present study was designed to investigate the contribution
of these two pathways for apoptosis in cancer cells. Lamellarin D promoted nuclear apoptosis in leukemia cells without prominent
cell cycle arrest. Signals transmitted by lamellarin D initiated apoptosis via the intrinsic apoptotic pathway. The drug induced
conformational activation of Bax and decreased the expression levels of antiapoptotic proteins Bcl-2 and cIAP2 in association
with activation of caspase-9 and caspase-3. Upon lamellarin D exposure, Fas and Fas-L expression was not modified in leukemia
cells. Moreover, leukemia cells deficient in caspase-8 or Fas-associated protein with death domain underwent apoptosis through
the typical mitochondrial apoptotic cascade, indicating that cell death induced by lamellarin D was independent of the extrinsic
apoptotic pathway. Lamellarin D also exerted a topoisomerase I–mediated DNA damage response resulting in H2AX phosphorylation,
and the upregulation of the DNA repair protein Rad51 and of p53, as well as the phosphorylation of p53 at serine 15. However,
lamellarin D killed efficiently mutated p53 or p53 null cancer cells, and sensitivity to lamellarin D was abrogated neither
by cycloheximide nor in enucleated cells. Lamellarin D–induced cytochrome c release occurs independently of nuclear factors
in a cell-free system. These results suggest that lamellarin D exerts its cytotoxic effects primarily by inducing mitochondrial
apoptosis independently of nuclear signaling. Thus, lamellarin D constitutes a new proapoptotic agent that may bypass certain
forms of apoptosis resistance that occur in tumor cells. [Mol Cancer Ther 2009;8(12):3307–17] |
---|---|
ISSN: | 1535-7163 1538-8514 1538-8514 |
DOI: | 10.1158/1535-7163.MCT-09-0639 |