Multispectral MRI segmentation of age related white matter changes using a cascade of support vector machines
Abstract White matter changes (WMC) are the focus of intensive research and have been linked to cognitive impairment and depression in the elderly. Cumbersome manual outlining procedures make research on WMC labor intensive and prone to subjective bias. We present a fast, fully automated method for...
Gespeichert in:
Veröffentlicht in: | Journal of the neurological sciences 2012-11, Vol.322 (1), p.211-216 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract White matter changes (WMC) are the focus of intensive research and have been linked to cognitive impairment and depression in the elderly. Cumbersome manual outlining procedures make research on WMC labor intensive and prone to subjective bias. We present a fast, fully automated method for WMC segmentation using a cascade of reduced support vector machines (SVMs) with active learning. Data of 102 subjects was used in this study. Two MRI sequences (T1-weighted and FLAIR) and masks of manually outlined WMC from each subject were used for the image analysis. The segmentation framework comprises pre-processing, classification (training and core segmentation) and post-processing. After pre-processing, the model was trained on two subjects and tested on the remaining 100 subjects. The effectiveness and robustness of the classification was assessed using the receiver operating curve technique. The cascade of SVMs segmentation framework outputted accurate results with high sensitivity (90%) and specificity (99.5%) values, with the manually outlined WMC as reference. An algorithm for the segmentation of WMC is proposed. This is a completely competitive and fast automatic segmentation framework, capable of using different input sequences, without changes or restrictions of the image analysis algorithm. |
---|---|
ISSN: | 0022-510X 1878-5883 1878-5883 |
DOI: | 10.1016/j.jns.2012.07.064 |