Is trichloroacetic acid an insufficient sample quencher of redox reactions?

The global protein thiol pool has been reported to play a major role in the defense against oxidative stress as a redox buffer similar to glutathione. The present study uses a novel method to visualize cellular changes of the global protein thiol pool in response to induced oxidative stress. Unexpec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants & redox signaling 2013-03, Vol.18 (7), p.795-799
Hauptverfasser: Curbo, Sophie, Reiser, Kathrin, Rundlöf, Anna-Klara, Karlsson, Anna, Lundberg, Mathias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The global protein thiol pool has been reported to play a major role in the defense against oxidative stress as a redox buffer similar to glutathione. The present study uses a novel method to visualize cellular changes of the global protein thiol pool in response to induced oxidative stress. Unexpectedly, the results showed an uneven distribution of protein thiols in resting cells with no apparent change in their level or distribution in response to diamide as has been reported previously. Further analysis revealed that thiol pool oxidation is artificially high due to insufficient activity of the widely used sample quencher trichloroacetic acid (TCA). This suggests that previously published articles based on TCA as a quencher should be interpreted with caution as TCA could have caused similar artifacts. Overall, the results presented here question the major role for the global thiol pool in the defense against oxidative stress. Instead our hypothesis is that the fraction of proteins involved in response to oxidative stress is much smaller than previously anticipated in support of a fine-tuned cell signaling by redox regulation.
ISSN:1523-0864
1557-7716
DOI:10.1089/ars.2012.4949