Organic bioelectrodes in clinical neurosurgery

Clinical neurosurgery deals with surgical procedures and intensive care of illnesses in the human central and peripheral nervous system. Neurosurgery should be looked upon as a high-tech specialty and very much dependent on new technological innovations aiming at improvements of patient's treat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2013-09, Vol.1830 (9), p.4345-4352
1. Verfasser: von Holst, Hans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Clinical neurosurgery deals with surgical procedures and intensive care of illnesses in the human central and peripheral nervous system. Neurosurgery should be looked upon as a high-tech specialty and very much dependent on new technological innovations aiming at improvements of patient's treatment and outcome. During the last decades neurosurgery has improved substantially thanks to the introduction of applied imaging technologies such as computerized tomography and magnetic resonance tomography, and new surgical modalities such as the microscope, brain navigation and neuroanesthesiology. Neurosurgical disorders, which should have the potential to benefit from conductive organic bioelectrodes, include traumatic brain and spinal cord injury and peripheral nerve injuries due to external violence in the restoration of healthy communication. This holds true also for cerebral nerves altered in their functions due to benign and malignant brain and spinal cord tumors. Further, new innovative devices in the field of functional nervous tissue disorders make the use of organic conductive electrodes attractive by considering the electrical neurochemical properties of neural interfaces. Although in its infancy, conducting organic polymers as bioelectrodes have several potential applications in clinical neurosurgery. The time it takes for new innovations and basic research to be transferred into clinical neurosurgery should not take too long. However, a prerequisite for successful implementation is the close interdisciplinary collaboration between engineers and clinicians. This article is part of a Special Issue entitled Organic Bioelectronics—Novel Applications in Biomedicine. ► Neuromodulation for neurosurgery disorders is a useful treatment. ► Most implants of today consist of metals with some disadvantages. ► Organic bioelectrodes are more efficient compared to metals.
ISSN:0304-4165
0006-3002
1872-8006
1872-8006
DOI:10.1016/j.bbagen.2012.10.013