Structural brain changes associated with depressive symptoms in the elderly with Alzheimer’s disease

Objective To examine neuroanatomical changes associated with depressive symptoms in Alzheimer's disease (AD) and the relationship between brain structure and cerebrospinal fluid (CSF) AD biomarkers in depressed and non-depressed patients. Methods Two independent cohorts were used in this study....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurology, neurosurgery and psychiatry neurosurgery and psychiatry, 2014-08, Vol.85 (8), p.930-935
Hauptverfasser: Lebedeva, Aleksandra, Westman, Eric, Lebedev, Aleksander V, Li, Xiaozhen, Winblad, Bengt, Simmons, Andrew, Wahlund, Lars-Olof, Aarsland, Dag
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective To examine neuroanatomical changes associated with depressive symptoms in Alzheimer's disease (AD) and the relationship between brain structure and cerebrospinal fluid (CSF) AD biomarkers in depressed and non-depressed patients. Methods Two independent cohorts were used in this study. The first cohort (KI) was collected from the Memory Clinic at Karolinska University Hospital and consisted of 41 AD patients. The second cohort was selected and downloaded from the Alzheimer’s Disease Neuroimaging Initiative database (ADNI) and consisted of 148 patient. Patients underwent medical, neuropsychological assessment, laboratory analyses of CSF, including β amyloid 1–42 (Aβ 42), total τ (t-τ), phosphorylated τ 181 (p-τ) and brain MRI examination. In the KI cohort, depression was assessed using the Cornell Scale for Depression in Dementia, and in the ADNI cohort the Geriatric Depression Scale was applied. 3D T1-weighted MRI images were processed using automated steps for segmentation and surface reconstruction implemented in Freesurfer. General linear model analysis was used as a statistical approach. Results Cortical thinning in AD patients with depressive symptoms compared with those without was observed in the left parietal and temporal brain regions in both cohorts. Negative correlation between cortical thickness and t-τ was greater in depressed compared with non-depressed AD patients in precuneus and parahippocampal cortex. Conclusions Our findings suggest that depressive symptoms in AD patients are associated with cortical thinning in temporal and parietal regions. In addition, our findings suggest that τ protein pathology in these areas may contribute to the development of depressive symptoms in AD.
ISSN:0022-3050
1468-330X
DOI:10.1136/jnnp-2013-307110