Macrophage-specific NOX2 contributes to the development of lung emphysema through modulation of SIRT1/MMP-9 pathways

Reactive oxygen species (ROS) participate in the pathogenesis of emphysema. Among ROS‐producing enzymes, NOX NADPH oxidases are thought to be responsible for tissue injury associated with several lung pathologies. To determine whether NOX2 and/or NOX1 participate in the development of emphysema, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pathology 2015-01, Vol.235 (1), p.65-78
Hauptverfasser: Trocme, Candice, Deffert, Christine, Cachat, Julien, Donati, Yves, Tissot, Christelle, Papacatzis, Sylvie, Braunersreuther, Vincent, Pache, Jean-Claude, Krause, Karl-Heinz, Holmdahl, Rikard, Barazzone-Argiroffo, Constance, Carnesecchi, Stéphanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reactive oxygen species (ROS) participate in the pathogenesis of emphysema. Among ROS‐producing enzymes, NOX NADPH oxidases are thought to be responsible for tissue injury associated with several lung pathologies. To determine whether NOX2 and/or NOX1 participate in the development of emphysema, their expression patterns were first studied by immunohistochemistry in the lungs of emphysematous patients. Subsequently, we investigated their contribution to elastase‐induced emphysema using NOX2‐ and NOX1‐deficient mice. In human lung, NOX2 was mainly detected in macrophages of control and emphysematous lungs, while NOX1 was expressed in alveolar epithelium and bronchial cells. We observed an elevated number of NOX2‐positive cells in human emphysematous lungs, as well as increased NOX2 and NOX1 mRNA expression in mouse lungs following elastase exposure. Elastase‐induced alveolar airspace enlargement and elastin degradation were prevented in NOX2‐deficient mice, but not in NOX1‐deficient mice. This protection was independent of inflammation and correlated with reduced ROS production. Concomitantly, an elevation of sirtuin 1 (SIRT1) level and a decrease of matrix metalloproteinase‐9 (MMP‐9) expression and activity were observed in alveolar macrophages and neutrophils. We addressed the specific role of macrophage‐restricted functional NOX2 in elastase‐induced lung emphysema using Ncf1 mutant mice and Ncf1 macrophage rescue mice (Ncf1 mutant mice with transgenic expression of Ncf1 only in CD68‐positive mononuclear phagocytes; the MN mouse). Compared to WT mice, the lack of functional NOX2 led to decreased elastase‐induced ROS production and protected against emphysema. In contrast, ROS production was restored specifically in macrophages from Ncf1 rescue mice and contributes to emphysema. Taken together, our results demonstrate that NOX2 is involved in the pathogenesis of human emphysema and macrophage‐specific NOX2 participates in elastase‐induced emphysema through the involvement of SIRT1/MMP‐9 pathways in mice. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
ISSN:0022-3417
1096-9896
1096-9896
DOI:10.1002/path.4423