α7 Nicotinic Acetylcholine Receptor Is Expressed in Human Atherosclerosis and Inhibits Disease in Mice—Brief Report

OBJECTIVE—Cholinergic pathways of the autonomic nervous system are known to modulate inflammation. Because atherosclerosis is a chronic inflammatory condition, we tested whether cholinergic signaling operates in this disease. We have analyzed the expression of the α7 nicotinic acetylcholine receptor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2014-12, Vol.34 (12), p.2632-2636
Hauptverfasser: Johansson, Maria E, Ulleryd, Marcus A, Bernardi, Angelina, Lundberg, Anna M, Andersson, Annica, Folkersen, Lasse, Fogelstrand, Linda, Islander, Ulrika, Yan, Zhong-qun, Hansson, Göran K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:OBJECTIVE—Cholinergic pathways of the autonomic nervous system are known to modulate inflammation. Because atherosclerosis is a chronic inflammatory condition, we tested whether cholinergic signaling operates in this disease. We have analyzed the expression of the α7 nicotinic acetylcholine receptor (α7nAChR) in human atherosclerotic plaques and studied its effects on the development of atherosclerosis in the hypercholesterolemic Ldlr mouse model. APPROACH AND RESULTS—α7nAChR protein was detected on T cells and macrophages in surgical specimens of human atherosclerotic plaques. To study the role of α7nAChR signaling in atherosclerosis, male Ldlr mice were lethally irradiated and reconstituted with bone marrow from wild-type or α7nAChR-deficient animals. Ablation of hematopoietic cell α7nAChR increased aortic atherosclerosis by 72%. This was accompanied by increased aortic interferon-γ mRNA, implying increased Th1 activity in the absence of α7nAChR signaling. CONCLUSIONS—The present study shows that signaling through hematopoietic α7nAChR inhibits atherosclerosis and suggests that it operates by modulating immune inflammation. Given the observation that α7nAChR is expressed by T cells and macrophages in human plaques, our findings support the notion that cholinergic regulation may act to inhibit disease development also in man.
ISSN:1079-5642
1524-4636
1524-4636
DOI:10.1161/ATVBAHA.114.303892