Biological interpretation of genome-wide association studies using predicted gene functions

The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NATURE COMMUNICATIONS 2015-01, Vol.6 (1), p.5890-5890, Article 5890
Hauptverfasser: Pers, Tune H., Karjalainen, Juha M., Chan, Yingleong, Westra, Harm-Jan, Wood, Andrew R., Yang, Jian, Lui, Julian C., Vedantam, Sailaja, Gustafsson, Stefan, Esko, Tonu, Frayling, Tim, Speliotes, Elizabeth K., Boehnke, Michael, Raychaudhuri, Soumya, Fehrmann, Rudolf S. N., Hirschhorn, Joel N., Franke, Lude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes. Identifying which genes and pathways explain genetic associations is challenging. Here, the authors present DEPICT, a tool for gene prioritization, pathway analysis and tissue/cell-type enrichment analysis that can be used to generate testable hypotheses from genetic association studies.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms6890