A survey of best practices for RNA-seq data analysis

RNA-sequencing (RNA-seq) has a wide variety of applications, but no single analysis pipeline can be used in all cases. We review all of the major steps in RNA-seq data analysis, including experimental design, quality control, read alignment, quantification of gene and transcript levels, visualizatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2016-01, Vol.17 (10), p.13-13, Article 13
Hauptverfasser: Conesa, Ana, Madrigal, Pedro, Tarazona, Sonia, Gomez-Cabrero, David, Cervera, Alejandra, McPherson, Andrew, Szcześniak, Michał Wojciech, Gaffney, Daniel J, Elo, Laura L, Zhang, Xuegong, Mortazavi, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RNA-sequencing (RNA-seq) has a wide variety of applications, but no single analysis pipeline can be used in all cases. We review all of the major steps in RNA-seq data analysis, including experimental design, quality control, read alignment, quantification of gene and transcript levels, visualization, differential gene expression, alternative splicing, functional analysis, gene fusion detection and eQTL mapping. We highlight the challenges associated with each step. We discuss the analysis of small RNAs and the integration of RNA-seq with other functional genomics techniques. Finally, we discuss the outlook for novel technologies that are changing the state of the art in transcriptomics.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-016-0881-8