Role of the RB-Interacting Proteins in Stem Cell Biology
Human retinoblastoma gene RB1 is the first tumor suppressor gene (TSG) isolated by positional cloning in 1986. RB is extensively studied for its ability to regulate cell cycle by binding to E2F1 and inhibiting the transcriptional activity of the latter. In human embryonic stem cells (ESCs), only a m...
Gespeichert in:
Veröffentlicht in: | Advances in cancer research 2016, Vol.131, p.133-157 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human retinoblastoma gene RB1 is the first tumor suppressor gene (TSG) isolated by positional cloning in 1986. RB is extensively studied for its ability to regulate cell cycle by binding to E2F1 and inhibiting the transcriptional activity of the latter. In human embryonic stem cells (ESCs), only a minute trace of RB is found in complex with E2F1. Increased activity of RB triggers differentiation, cell cycle arrest, and cell death. On the other hand, inactivation of the entire RB family (RB1, RBL1, and RBL2) in human ESC induces G2/M arrest and cell death. These observations indicate that both loss and overactivity of RB could be lethal for the stemness of cells. A question arises why inactive RB is required for the survival and stemness of cells? To shed some light on this question, we analyzed the RB-binding proteins. In this review we have focused on 27 RB-binding partners that may have potential roles in different aspects of stem cell biology. |
---|---|
ISSN: | 0065-230X 2162-5557 |
DOI: | 10.1016/bs.acr.2016.04.002 |